一傅里葉變換
傅里葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或余弦函數)或者它們的積分的線性組合。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。最初傅里葉分析是作為熱過程的解析分析的工具被提出的。
二傅里葉變換應用
傅里葉變換在物理學、電子類學科、數論、組合數學、信號處理、概率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有著廣泛的應用(例如在信號處理中,傅里葉變換的典型用途是將信號分解成幅值譜——顯示與頻率對應的幅值大小)。
三傅里葉變換相關知識
傅里葉變換屬于諧波分析。三傅里葉變換的基本性質
01線性性質
02平移性質
03微分關系
04卷積特性